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An attempt to ascertain the structure of the crystal-amorphous interface in polycrystalline polymers of 
lamellar morphology is made by discussion of an idealization of loops called wickets. Equations which 
arise from the constraints of density at the interface are obtained that relate the various kinds of wickets 
to their lengths and to interface thickness. A measure of the degree of adjacent reentry is defined and 
bounds on the extent of adjacent reentry are obtained. It is found that the larger the assumed value of 
average loop size the larger the amount of adjacent reentry. Infinite average loop size results in complete 
adjacent reentry. 

INTRODUCTION 

The question of the structure of the interface between the 
amorphous and crystalline regions in a semicrystalline 
polymer system of lamellar morphology is not yet solved. 
Flory has estimated that at most one-half of the chains 
emanating from the crystal can proceed into the amor- 
phous region 1. The other half must turn back or fold. He 
also suggested that it was possible for more than one-half 
to turn back, but not less. DiMarzio 2, DiMarzo, Guttman 
and Hoffman 3, and DiMarzio and Guttman 4 have pre- 
sented estimates on the amount of folding which are 
considerably larger than the one-half figure. They have 
also given bounds on the amount and kind of folding 
possible for a variety of models of the amorphous phase. 
The above papers represent efforts to establish quantita- 
tively a result explained qualitatively by Frank 5 in 1958. 

Folding can be either adjacent or non-adjacent. The 
determination of the amount of folding is much easier 
than the problem of determining whether this folding is 
adjacent reentry or non-adjacent reentry. In ref 4 the 
amount of adjacent reentry folding was calculated to be 
large for polymer crystallization from dilute solution but 
experimental and other theoretical results confirming this 
conclusion are meagre. The amount and kind of folding in 
melt crystallized polymers is even less well known, though 
recent estimates based on neutron scattering data on 
quench-crystallized polyethylene suggest that the degree 
of adjacency is above one-halt ~'7. 

The question of the structure of the interface region of a 
semi-crystalline polymer system is amenable to both 
experimental and theoretical studies. One example of a 
system for which the properties of the interface (and 
therefore answers to questions on the character of chain 
folding) are experimentally accessible, is the diblock 
copolymer system of poly(ethylene oxide) (PEO) copoly- 
merized with polystyrene (PS). These systems have been 
studied experimentally by Lotz, Kovacs, Keller, and 
Basset 8'9. Here, the poly(ethylene oxide) portions are 
crystalline and the polystyrene portions are amorphous. 

By measurement of lamellar thickness of both the amor- 
phous and crystalline regions and by knowledge of the 
molecular weight of the poly(ethylene oxide) and of the 
polystyrene portions, the authors found that the PEO 
chains are folded with about 10-13 stems per molecule, A 
theory of chain-folding in these amphiphilic systems has 
been developed which predicts the lamellar thicknesses in 
terms of the microscopic parameters of the system 1°. 
Furthermore, the nature of the interface in this system is 
experimentally ascertainable at least in part because one 
can determine the interface thickness. Kovacs 11 has seen 
many higher order reflections in the small-angle X-ray 
scattering data (10-15 orders). This observation suggests 
a narrow interface region for this system. 

Interfaces of non-crystalline phase-separated polymer 
systems also appear to be narrow. Meier 12 and Helfand 13 
have made theoretical estimates of about 15-20 A for 
interface thickness of diblocks both of whose components 
are amorphous. Krause ~4 has argued for even thinner 
interfaces (on the order of one monomer unit thick). These 
results suggest that in many polymer-polymer systems 
the interface region is narrow. 

The nature of the total amorphous region of a semi- 
crystalline polymer has been modelled in a variety of 
ways 15-17. In any description we need to have a model 
which has adjacent folds, bridging chains (bridges), loops, 
cilia and free chains (or floating chains - -  chains un- 
attached to any crystalline region). Each of these kinds of 
chains must participate in the amorphous phase and all 
must be included in a complete description of the 
interfacial region. Previous models of the amorphous 
crystal interface take extreme views of the numbers of 
each kind of these entities at the interface. In the fringed 
micelle model each stem yields a bridge (or cilia); this 
model results in high densities for the amorphous phase 4. 
The switchboard model of Flory (recently called the 
random reentry model) 1'15'6 has its floppy loops and 
bridges which obey random statistics. It leads to too high 
a density in the amorphous phase 3'7'6 and to questions as 
to whether the morphology of single crystals is consonant 
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K-2,X-2~ --I "q" K=4, X=O 

Figure I Examples of various kinds of wickets in an interracial 
region of M = 4 

with such a model is. However, a model with complete 
adjacent reentry is not consistent with the neutron 
scattering data on highly quenched samples of po- 
lyethylene1 5,7,19. As we pointed out earlier 6'7 something 
intermediate to these models seems to be called for, but 
with a degree of adjacent reentry of somewhat over one- 
half. 

In the present paper, we present a generalized model of 
the interface that deals with the intermediate situations. In 
this paper we propose to study what we shall call the 
wicket model. Wickets, as seen in Figure 1, are the 
simplest form of a loop. A chain walks K steps directly 
away from the surface plane, then walks x steps parallel to 
the surface, and then directly returns to the surface. This 
object which is indexed by both K and x is called a wicket. 
We study wickets because, with their simplicity of struc- 
ture, equations relating to their packing densities may be 
written down and solved in special cases. However, even 
with their simplicity they have some random character in 
that for a given K the distribution of x and thus the 
reentry position of the wicket may be random. The 
solutions to the problems of the wicket model will yield 
insight into the problems of the packing of loops near a 
surface. 

Wickets offer an opportunity to study a model of the 
interface which has both loops and adjacent folds. The 
loops modelled here can be tight loops as in the case where 
x is small or loose loops as in the case where x is large. In 
each case we may estimate the minimal amount of 
adjacency for each type of loop. Thus the study of such a 
model will hopefully offer a means to determine the 
relative amounts of randomness and adjacency that can 
coexist in the surface layer without violating simple 
packing considerations. 

THEORY OF WICKETS 

We let nr= be the number of wickets that go K steps 
perpendicular to the lamellar phase and walk (x + 1) steps 
on level K, parallel to the lamellar plane. Figure 1 shows 
some examples of wickets. The interface region has M + 1 
levels labelled 0 to M on which wickets may lie. At each 
level we allow the wickets to fill up the space to a density of 
p(K). The wickets all come from the bottom lamellae. The 
case in which we have wickets coming from both surfaces 

is also interesting, but will not be treated here. The 
number of segments at level K is given as: 

oo oo 

(1) 

P(K)L2 = ~--o xnr~ + 2 nl, x 
= ! x 

(2) 

P(O) Lz= x~=o Xno,x + 21=~_ b x~=o nt,x (3) 

where L 2 is the area in which the nK,x wickets are located. If 
we define: 

g o  

nt = x~O nt'x (4) 

Yc(1)nl = x~= o xnt,x (5) 

mt = n#L 2 (6) 

then the basic equations can be written as: 

p(M) = ~(M)mM + 2ram (7) 

M 

p(K) = ~(K)mr + 2 ~ m, (8) 
I=K 

M 

p(0) = ~(0)m o + 2 ~ m, (9) 
1 = 0  

Note that: 

2(0)=0 (10) 

This condition is necessary, otherwise we could have 
wickets whose tops are below the level 0. Level zero is 
defined as that level which has no wickets below it. This 
also means that p(0)= 1. That  is the bottom level has by 
assumption the crystal density. With these two con- 
ditions, we also have from equation (9) the relation: 

M 

Z mt = 1/2 (11) 
1 = 0  

This is the statement that the stems of the wickets 
completely fill the crystalline region beneath the interface. 
Notice that the normalization is one-half rather than one. 

By subtracting the equation for level K + 1 from that for 
level K we obtain: 

~(K + 1)m,~, 1 - [p(K + 1 ) -  p(K)] 
mr= (~(K)+2) (12) 

To simplify the equations, we assume that p(K)= 1 in the 
remainder of this paper. Thus we have: 

tn ~2(K + 1) K - " ~ ~ m K + I  0 < K < M - 1  (13) 

1 
mM = 2 + 2(M) (14) 

1380 POLYMER, 1980, Vol 21, December 



:.: . . . .  ============================ . . . . . . . . . . . . . .  . . . . . . . . . .  

: -  " :  ' ~ ..... -.-- :::::::::: :i:!:i:i::: ::::i:i:i: 
- . - . . . - _ - ,  : , _ . , - , - .  ' , , . , , - , , ,  , . , _ , x , - ,  , : ;~;~; ! ; t i  
......... : . . . . .  ~ ........ :::::::::: !i~i~i~i~il . . . .  .... . . - . . . - .  . . . . - . . . . . . . . .  • 
• . - . . - .  . .  .~ . : . : . - . - .  : . : . : . : . : . :  : ; : ; : ~ ' ; ' ~  
: ;  . . . . ,  , . . :  ; - ; . , , . , , ;  ' : ' : " , ' ,  ; : : : ; ; ; ; ; ;  ", ' , ' . ' ."" ' '  : ' : ' : - : , : , '  ; : ; t ; r ; ' ; ' ;  

. . . . . .  • ":':':':': i:i:~i:i:: ' " " ' " "  ' ' ' "  ........... " ......... " , ' , ' , - , - . "  ' , ' , ' , - , ,  X ' : ' : . 7 , "  " X ' : , ' , ' ,  '1111:':1]1 ; ' ; ' : ' : ' ; "  ' ' ' ' I ' . "  " 1 1 1 " 1  : ' : ' ( ' : ' : ' q  ' ' : I : . : . ' ,  

- -  ' -  , - , ' . ' , ' , "  " : ' : ' : ' : - :  : . : . : . ; . ;  ; : ; : ; t ; 5 " ;  ; : : i ; ; ; ; : ; ;  
: : : : : t : i : i :  . ' . ' , ' . ' . ' ,  : ' : . : . ; . : - :  . : . : . ; . : .  : - : . t ; t ; ' ; '  . x . : . - , - ,  . . . : . : . : .  . : . : . : - ; - :  . - . . . . . . . . . . . . . . . . . . . . : . : . :  . . . . . - .  

:':':':'::: :':':':':': ii!~!iii!i :':':':': :~::':':': ......... ' : . : . : . : ; : ;  . : . : , : , : . : ,  . : . : . ; . ; .  : . : . : . : ; : ; :  ..:.:.-,.,'-'-':" . - ,  

"" " ii!ii!ii!ii i!!i!ii!i " : :  . . . . .  
. . . . . . .  'ili!ii!! i iiii !iii . . . . . . .  " - "  . . . . . . . . . .  

: . : ; t ; t ; : ;  i : - : . ; ; ; ; : :  " ' ' , ' . ' . ' - ' , "  . ' - ' - " - - -  

:': '::::- ' : ' : ' : ' : ' :": ' : ' : ' :  - i:!:i:i:i:i :!:i:i:!: .....-.-.'""' . . . . . . . . .  . . . . .  -.-" . , . . . , . -  • • , . . . o . . . . . . . . , .  • . .  

. : , ; - ; - ; , :  
; ; ; : : ; ; ; ' . "  
; ; ; ; ' ; : : : ; :  
. ' , : . ' , : , : .  

iii iiiii : ; , x < , : , :  
. , ; - x . > :  

, . . . , , - . , . ,  
; , ; - ; - ; ,1 - ;  , , , . . , , - , ,  

ii~!~!iiiil 

  i!!iiiiiIiiiii!ii!i iiiiii i ii 

lw 

t.-....I ~ t...:.:.l 

i!ii!ii!ii iiiiii!i ili!i!iii, . . . . . .  

. ; . ' . , . ; . ;  , , . - . . , , , ,  . _ , : , w . -  

; , ; , . ' . ; . ; , ;  ; : ; ; - ; : ; ; ,  . . . .  5 : : ' : ' "  
. ; . ; . ; . - . ;  . . . . , , , , . ,  , , : , - . - , -  
. . . . . . .  • . . . . . . . . . . . . - . -  
. . . - . . . . . . . . . . * . . . - . . . .  < ¢ . -  

::::::::::: ????2 ........... 
: , ; ; : ; : : ; ; ;  ; , ; - ; , : . ' , :  . . . - >  , : ,  

i:!:i:i:i: ::::::::::: ::::::::::: , , . . . . , . , ,  : ; ; ; ; : : : ; : ' ,  ; . . .  ; ;  
, . . , . , . . , ,  , - , ; , : . : . ' .  : ~ . . . .  

• ; , ; . ; - ; , :  ; , ; , ; , : , ' , ;  + 5 " : " "  • , . . , . . , - ,  , , . . , . , . . - .  . . . .  - .  
; , : . : . : , ; , ;  . ' . ; . ; . : , ; .  : . z - t ; ' ; ' ; :  
• ' . ' , ' . ' , ' ,  : ; ; ; ; , ; ; : ; ;  : ,_ - , : . : , ,  

i~ii!i!iiii ........ • . . . . .  • " . ; . ; , ; , :  : : • . ,  
: : ; : ; ; ; : ; ; ;  " : : : ; 7 ; : ; -  4 , . .  ; 

Figure 2 

b < . : . : . : 4 - - - - . - . . . . . . - . . .  . . . . . .  ; . ; . ; . ; . ; . ;  

........... :':':*:~;''""" :::::::::::i!~!i~iiiil  !iiiii!i!t ...... " " "  . . . . . .  i 
, . . . , x < . . ' . ' . - . ' . ' ,  

............... • ".'." i:~::i:i:i,:.:.:.:.:. 
• , x < , - i  . - -  - . . . . . . . . . . . . .  

.:::::::::I "-' i i  

........... i:~:::i:i :':':':':':iii!i~i~iil 

: : ' , , , ; , : . ; , ; , ; ,  , ' , ' - ' - - . ' , . : , ; , ; . ; , : ,  
, ; , ; , ; - : , ; . , , , . . , , . , . ,  

• ....:.-.-:::::::::::::::::::::: ...... i:!:~:i:i:i~:~:i:i:i:i 
. . . . .  . . . . . . . . . .  ; . ; . ; . ; . ; . . . . . . . . . . . .  
. . . . . .  . . . . . . . . . .  . . . . . . . . . .  
: , : . : ; 5 " ; '  : ' : ' : ' ; ' ; ' 1  ' ' " ' " '  , . , - , , . , , ,  
. . . .  . . ; - ; - ; . ; . : . . ; . : . : . ; . ;  
. . . . .  . , , , . , , - , , , ,  ; , ; , : . ; , ; , ~ . ! . ! , : , - ,  
: - : : : ' X ' "  . . . .  , , , , , , , , , - :  

. . . . . . . . . . .  i i i iii i . . . . . .  . ; . ; . : . : . :  . . . . . . . . . . t . : . : . : . . -  

. . . . . .  • , , , . , , , , ,  
. . . . .  - -  - ; . ; , ; . : , : , ;  . : . : . : , : , , , ~ , : , : . : , ,  

Example of  nested wickets which show surface structure 

The above assumes that the density in the interface region 
is identical to the crystal density. A more sensible 
assumption would be that the density of the interface 
region smoothly goes from the crystal density to the 
amorphous density but this would complicate an already 
complicated set of equations. The fundamental equations 
(13 and 14) give the m K in terms of the ~(K). These 
equations plus equation (10) are our complete set of 
equations. 

We have M + 1 (inK) variables and M [~(K)] variables 
but only M + 1 equations relating them. An important 
question is whether we can determine any other relations 
which help to constrain the possible values of m r and 
~(K). Clearly such relations exist, but in this paper we 
shall not attempt to quantify them. We have not yet 
solved this important problem, but we should like to 
mention some ideas that will need to be considered further 
to develop these constraints. 

One constraint which may be experimentally accessible 
is the average loop length. The average loop length f~ is 
defined by: 

£~ = [(2(K) + 2K]mK (16) 
K = 0  

Summation of equations (7), (8) and (9) for all K yields the 
numerator of equation (16). Assuming p(K)= p(0)= 1, we 
obtain: 

= 2(M + 1) (17) 

Thus the average loop length is twice the thickness. This 
result applies to models more general than the wicket 
model and to derive it one only needs to assume that loops 
and only loops are space filling in a interfacial region of 
thickness M. 
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We can now ask how each term on the r.h.s, of equation 
(16) contributes to ~. If the average x is zero, that is: 

M /~=OmK 0 = K~_ 0~(K) (18a) 

then from equation (13) we see that we have completely 
adjacent reentrant wickets at level M. Further if the 
average K is zero, there are no wickets above the zeroth 
level: 

/ om. 0 = K~=oKmK (18b) 

then we have complete adjacent reentry. We might expect 
when we had: 

~(K)=2K (18c) 

(i.e. an isotropic case) we would have the minimum 
adjacent reentry. 

Another constraint is the value of M. If it can be 
established that the interface region is on the order of 15 A 
thick as has been suggested by the work on block 
copolymersl 2 - 14 then a few layers are suggested (M = 1 to 
6). Such a small value of M enormously simplifies the 
range of possible structures for the surface• The adsor- 
ption theories of Helfand 2°, Roe 21 and Scheutjens and 
Fleer 22 show narrow interfaces for adsorption of po- 
lymers from solution. A recent work of Poser and 
Sanchez 23 shows M values of about 5 which are largely 
independent of molecular weight for the case of a liquid- 
vapour interface. Finally, it is a characteristic of Cahn-  
Hilliard theory that interface thicknesses are small except 
near critical points. These facts suggest, but do not prove, 
that the energetic differences between amorphous and 
crystalline regions result in small M values. 

In addition to the energetic constraints we have two 
general classes of entropy constraints. 

The first entropy constraint concerns the difficulty in 
packing the wickets when they are considered to be rigid 
objects. To see that there is a constraint, imagine that at 
layer K we are packing rigid rods of length ~(K) randomly 
within the layer. For such a system packing difficulties 
occur long before we reach a dense packing 24-26. We can 
avoid these difficulties by aligning the rods (horizontal 
portion of the wickets) parallel within each layer. 
However, the vertical portions of the wickets will still have 
large interferences with the horizontal portions of other 
wickets. We conclude that there are great difficulties in 
packing rigid wickets. However, certain specialized nested 
structures like that of Figure 2 or variants of Figure 2 are 
not precluded, but significant ordering in the interfacial 
regime would be implied by such structures. 

The second entropy constraint concerns the difficulty in 
packing the wickets when they are considered to be 
flexible objects. This problem has been thoroughly dis- 
cussed in ref4. The main conclusion is that the tendency to 
maximize entropy results in chains and chain portions in 
the amorphous region whose contour length x is con- 
siderably in excess of M. That is to say, a substantial 
wandering of chains in the amorphous region occurs due 
to the increase in the number of configurations gained by 
such wanderings. Our selections of ~(K) in the next section 
are made with the results of ref 4 in mind but they are not 
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Figure 3 Lower bounds (LB) and Upper bounds (UB) for the 
amount of adjacent reentry, A ,  as a funct ion of wicket length for 
M = 1 (a two layer structure). The lower bound for x = 0 is 1. The 
dotted line schematically displays the true A 

unambiguously determined by that work. The fact that 
entropy tends to result in large x coupled with the 
constraints of density which are embodied in the equa- 
tions (10--14) of this work can result in substantial 
adjacent reentry. This is shown in the next section. 

There is another constraint arising from entropy which 
is noted in the Discussion below. 

Although the above arguments suggest great difficulties 
in the formation of any but highly structured (nested) 
loops, quantitative proofs are lacking. A quantitative 
proof would require knowledge of M relationships among 
the 2(K) and m I in addition to those of equations (7)-(9). 
An immediate difficulty arises. Are these equations to be 
determined by kinetic or equilibrium considerations? 
Certainly lamellar thickness and degree of crystallinity, X¢, 
are determined by kinetic considerations. This means that 
at a fundamental level the M additional relationships can 
be obtained only through (difficult) kinetic conside- 
rations. Alternatively a simple equilibrium procedure 
suggests itself. We assume the amorphous thickness M 
and the crystalline thicknesses MZJ(1-Z~ ) as given. 
Although these quantities are determined by kinetics, we 
can know them through experiments and thereby circum- 
vent difficult theoretical questions. We now assume that 
the free energy of the above lamellar system is a minimum. 
That  is to say, there is enough mobility in the chains so 
that they can seek out the minimum free energy situation 
consistent with the constraint of M and Z¢. This procedure 
determines :~(K) and m r The implementation of the above 
equilibrium approach is still a difficult problem which will 
be tackled at a later date. Although we will be forced in 
this paper to deal with an incomplete set of equations 
there is a sense in which this can be an advantage. The 
conclusions we draw, though limited in scope transcend 
any approximations that may be found necessary for the 
complete treatment. Thus we proceed to a discussion of 
our incomplete set of equations. 

FRACTION OF ADJACENCY, A, AND ITS BOUND 

The amount of adjacency, A, is easily obtained for an M 
level interface region as: 

M 
A = 2 ~ mK,0 (19) 

K = 0  

where mr,x is defined as nr,x/L 2 in analogy to equation (6). 
Thus we have: 

oo 

mK =,,~=o= mr,x (20) 

Now by equation (10), m o =mo,o and we obtain 

A t> 2too 

Thus the fraction of folds on level zer,J is a lower bound to 
the amount of adjacency. 

Since equations (7)-(9) only relate to average values of 
x at level K, x(K), we have no way from these equations 
to obtain values for A. The distributions of x giving rise 
to each ~2(K), of course, determines the fraction of adjacent 
folds in each Kth level. Some example distributions 
should be instructive at this point. 

If the distributions of xs that lead to an ~(K) is narrow 
then the amount of adjacency, A, is just given by 2too 
because no other mK contributes to A (mK.0 = 0) 

A . . . . . .  =2too (21) 

If the distribution of xs is homogeneous from 0 to 2~(K) 
then the fraction of those adjacent folds are 1/[2~(K)+ 1] 
for each K and the amount of adjacency is: 

M 
mK 

Ahomo = 2 K~__ ° [22(K-)-) + 13 (22) 

If the distribution is exponential then it is easy to show*: 

M m 
A~xp=2 ~ ~ + 2 m o  

= ~xl r,.; 

SOLUTION OF EQUATIONS (13) AND (14) FOR 
SOME SPECIAL CASES 

(a) M = 0. We have m o = 1/2 as the only solution and 
this corresponds to perfect adjacent reentry. 

(b) M = 1. 

m 1 = 1/[-2 +.~(1)] (23) 

m o = x(1 )/(2 E2 + -~(1)-I) (24) 

For  2(1)= ~ we have m 1 = 0, m o = 1/2 for perfect adjacent 
reentry. For  2(1) = 0, we have m I = 1/2, m o = 0 which again 
corresponds to perfect adjacent reentry but at level 1 
rather than at level 0. Figure 3 displays the amount of 
adjacency A along with its bounds. 

(c) M =2. This case is of interest because Sadler has 
suggested 27 that his neutron scattering data can be fitted 
with equal amounts of adjacent, next-to-adjacent and 
next-to-next-to-adjacent loops. This model would require 

* This result is only true for large £(K) when integrals can replace sums. 
In general, for an exponential distribution 

p(x)= e-~(1 -e-~) ;  z = l n ( 1  + 1 ) 

1 
and I(0X 1 - e - ') = - -  

1 + ~(K) 
M m K  

Thus Aexp= 2 K= ~ 0 (  ~( ~T-+ 1) 
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Figure 4 Fraction of  adjacent reentry, A ,  fo r  three distr ibut ion 
funct ions as a funct ion of  the average length, X, of the wickets. 
The curves are asymptot ic to A = 1 for  x = **. In the Figure, curve 
(A) is the f ract ion of  adjacency for  an exponential  distr ibut ion of  
x(K)s w i th  a mean value X for  any level K for  a 5 level system 
(M = 5). Curve (B) is the f ract ion of  adjacency for  a homogeneous 
distr ibut ion of  x(K) (see text)  fo r  the same system. Curve (C) is the 
fraction of  adjacency for  a narrow distr ibut ion of  x(K)s for  the 
same system 

three levels (M = 2). We have for this case: 

1 
m(2) - 2 + ~(2) (25) 

£(2) 
m(1) = E2 + ~(1)] [2 + ~(2)] (26) 

ff(1)~2(2) (27) 
m(0) - 2[2 + ~(1)] [2 + ~(2)3 

Any values of 2(1) and ~(2) are consistent with equation 
(9). If ~(2)= go or if ~(1)=0 we again have a two level 
problem. It is easy to show that these equations are not 
inconsistent with Sadler's proposal. 

(d) The case of constant x(K)= X 

~(K)=X M>~K>~I 

1 
mM-2 + x (28) 

xM-K 
mK= (2+X)(M_K+I) I<~K<~M (29) 

X M 
m° = 2(2 + X) ~ (30) 

For  the case of X large compared with M we have m o 
= 1/2. More generally for large X we have approximately: 

mo e x p ( - 2 M / X )  (31) 
2 
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Equation (31) shows that large average loop size implies 
extensive adjacent reentry. This is catch 22 for the 
switchboard model. The very assumptions of large loop 
size (large X) force us to have substantial numbers of tight 
loops (substantial adjacent reentry). See equation (31). 

It is an inherent feature of the random switchboard 
model that a substantial number of the loops be short and 
tight. This feature arises solely from density requirements, 
and is not dependent on special features of the wicket 
model. Thus for example the application of Gamblers 
Ruin Methods 4 to a two-phase model of polymer semi- 
crystalline systems leads to an average run length in the 
amorphous region of 3M which in turn 3 results in an 
amount of adjacency of 2/3 (A = 2/3). Other methods 4'7 
which are applicable to amphiphilic diblock copolymers 
result in even larger values for A. The actual values ~(K) of 
the wicket model are, as we have observed, not yet known, 
but it is instructive to use the crude intuition that the loops 
randomly walk in the amorphous region before coming 
back to the surface. We then expect X = aM 2 and 

m o '-" exp( - 2/aM2) 
2 (32) 

This results in extensive adjacency. Please note that it is 
not the position of the authors that X = a M  2. We are 
simply making the observation that those who interpret 
the switchboard model in this way are forced to large 
amounts of adjacent reentry via equation (32) (A > 2mo). 

For  the case of small X, the picture is not as clear. For X 
approaching zero we have adjacent reentry but all at  level 
M. For X --- 1, the case of average near adjacency, we have: 

1 
A > g n  (33) 

For  the three distributions of xs described above, we 
obtain for X = 1: 

1 
Z ...... =3~/ (34a) 

1 2 1 
Ahomo=~-k-~ x ~ (34b) 

1 1 1 
Aexp=~-k- ~ x ~ (34c) 

It is clear for all distributions but the narrow one that we 
have a considerable amount of adjacent reentry for X = 1. 
For the narrow distribution with M large there is little 
adjacent reentry. However, almost all the folds are next 
adjacent in this case and we still then expect a somewhat 
ordered surface. In Figure 4 we display the amount of 
adjacency, A, for each of the three models of x(K) 
distributions for various values X for M = 5. Ahomo and 
Aexp have their minimum values where X is about 0.6 and 
0.7 times M. For M equal to 5 that minimum is about 20 
to 30~o adjacency. For M larger, the percentage minimal 
adjacency will drop and for smaller M, the percent 
minimal adjacency will increase. Notice for all the models 
for A we have over 50~o adjacency at X = 14 or 15 (2 or 3 
times M). Thus we see that if the value of X is less than M 
we may not conclude that adjacent reentry is the pre- 
dominant mode. However, we suggest that in such cases 
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the fold region is still highly structured. Figure 2 for 
example shows a system of nested folds in which X and M 
are proportional (M = 3). 

DISCUSSION 

Because of the inherent difficulties of the wicket problem 
there are many things we have not done. A listing will help 
to circumscribe what we have accomplished as well as to 
suggest useful problems. 

(1) We have ignored cilia, bridges, free chains and loose 
loops. It is easy to see that their inclusion results in more 
adjacent reentry than predicted by our equations. Let a 
bridge prolongate without change of direction perpendi- 
cular to the interface. Such chains have no effect on the 
equations. If we had started with an area of ExE and then 
reduced it to one of LxL by subtracting away all the 
bridges, then the solution is as we have given. Likewise, it 
is easy to see that any wandering of the bridge in 
directions parallel to the surface of the lamellae would 
take up space needed by the wickets, thus resulting in 
fewer wickets with large x and/or K. Similarly cilia, free 
chains, and loose loops above the surface take up needed 
space and result in more of the adjacent reentry wickets. 

(2) We have allowed chains to emanate from one 
surface only. If we allowed them to emanate from both the 
top and bottom surfaces of the crystals which enclose the 
amorphous region then we could formulate the problem 
along the lines of the development of this paper. Although 
we have not solved this problem, it is easy to see that a 
larger amount of adjacent reentry is implied. Fi?st~ notice 
that the upper surface of Figure 2 can be thought of as 
consisting entirely of adjacent reentry wickets. If we view 
the solved problem of this paper as a double surface 
problem we have solutions which correspond to sub- 
stantial amounts of adjacent reentry in the bottom layer 
and complete adjacent reentry in the upper layer. Thus, 
we can expect that the double surface problem results in 
considerably more adjacent reentrant wickets. We are not 
forced to this conclusion rigorously because we can 
imagine the double surface emanation problem with 2M 
layers to consist of two single surface problems, each of M 
layers placed back to back. However, this formulation is 
unrealistic because it does not allow for penetration of 
lower loops into upper regions and vice versa which is sure 
to occur due to entropic considerations. As a general rule 
we can surely state that twice as many wickets competing 
for the same space result in enhanced adjacent reentry in 
the two surface problem compared with the one surface 
problem. 

(3) The determination of loop size distribution from 
entropic and energetic considerations was not attempted. 
This is an integral and essential part of the problem. The 
authors believe that the theory of the thermodynamics at 
interfaces has to be further developed before its appli- 
cation to the nature of chain-folding can be made on the 
surface. We have, however, pointed out in previous 
works 2 -4 that if the chains in the amorphous regions are 
random then they overfill the space unless extensive 
folding occurs. Thus, packing considerations argue agai- 
nst loose loops. As we pointed out in the Theory above, 
tight non-adjacent loops also have difficulties. 

(4) Another important thermodynamic effect is the 
growth of cilia (the two ends of the molecules) at the 
expense of loops. A simplified model in ref 4 shows this 
effect clearly but the effect also occurs in biopolymers 28, 

adsorption of polymers o n  sur faces  22, and in a model of 
crystallization by R o e  29. This effect results in tight loops. 

(5) In describing the surface of a crystal obtained by 
the specific kinetic process of polymer crystal growth, 
we must include the requirements that the kinetic process 
places on the properties of the crystal interface. This 
certainly has not been done here and awaits a more 
complete picture of the growth kinetics. 

CONCLUSIONS 
We have used a simplified model of a loop to estimate the 
amount of strict adjacency or near adjacency which is 
necessary to fulfill packing requirements at the interface 
between the crystalline and amorphous portions of a 
polymer. We have shown that in general even the simplest 
model of a loop leads to packing difficulties unless we 
allow for some adjacency. We have offered some models 
which do not require strict adjacency but these have much 
near adjacency. Finally, we have shown that large loops as 
required by some versions of the switchboard model 
imply substantial adjacent reentry. 
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